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A percolation model has been used to examine how the elastic moduli are affected 
by component bulk concentrations. 

Formulation. Percolation theory deals with the structures and properties of microscop- 
ically inhomogeneous materials in which the components differ considerably in properties 
[I, 2]. The effective conductivity is derived in that theory (when a I # 0, o 2 = 0) as 

- t ( v l -  v J ,  i f  > 
~1 [ O, i f  Vl ~ Vc, ( 1 ) 

in which v I is the bulk concentration of the conducting component, v c is the threshold, and t 
the critical index. 

Simulation and measurements for three-dimensional systems show [2] that 

vo = 0,15 • 0,03, t = 1,5 - -  2. (2)  

There  have  r e c e n t l y  been d i s c u s s i o n s  on t h e  e l a s t i c  p a r a m e t e r s  in  p e r c o l a t i o n  sy s t ems  
[ 3 - 1 0 ] ,  where  i t  has  been found  t h a t  t h e  b e h a v i o r  o f  t h e  c o n d u c t i v i t y  and e l a s t i c i t y  i s  v e r y  
d i f f e r e n t  f rom l i n e a r i t y  in  t h e  bu lk  c o n c e n t r a t i o n .  C a l c u l a t i o n s  [5] show t h a t  when i n f i n i t e  
c l u s t e r s  a r e  fo rmed ( f o r  v 1 = Vc) ,  t h e  s y s t e m  does  n o t  have  m a c r o s c o p i c  r i g i d i t y  b e c a u s e  n e a r  
v c t h e  c l u s t e r s  a r e  h i g h l y  b r a n c h e d  and c o n t a i n  many s i n g l e  l i n k s ,  and t h e r e f o r e  on d e f o r m a -  
t i o n  they are compressed or stretched without elastic stress. In a face-centered cubic lat- 
tice, the threshold is [5] v~ = 0.42 (for v c = 0.i19), and the elastic moduli are 

K ~ ~ ~ (ul-- u~) f, where [ = 4.4 + 0.6. (3) 

A regular model has been proposed [6, 7], in which the angle between the units was fixed. 
In that model, macroscopic elasticity arises immediately the infinite cluster is formed. The 
critical index for a two-dimensional system was derived as f = 3.3 +_ 0.5. 

These first studies indicated that v* and f are dependent not only on the system dimen- 
sions but also on the component elasticities, as was found also in [9]. 

In [ii, 12], percolation theory was used in a model (Fig. I) that described the systems 
not only for 02/01 = 0 but also for any finite values of that ratio in volume-concentration 
ranges from 0 to i. In it, the isolated clusters (for v i < v c) are represented as cubes, with 
the links between those clusters arising suddenly for v i = v c and being represented by square 
rods having areas of cross section 

$I---- (vl--vc) ~'l-vo (4) 

For v I < Vc, the sizes of those clusters are proportional to v~/s. Here there is an 
analogy with the droplet model [13], where a drop or blob is analogous to an isolated cluster. 

Table 1 gives the geometrical parameters. 

The Fig. 1 model has been used in [14] to derive formulas for K and ~ in relation to the 
thermal-expansion coefficient for a two-phase system. 

One can specify various t and v c for the Fig. 1 model to examine the behavior of K and D 
when the components differ considerably in properties: K ~. 
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Fig. i. Percolation model for a micro- 

scopically inhomogeneous material. 

We consider how Poisson's ratio is dependent on the component concentrations and proper- 
ties. The information may assist in interpreting simulation results and the behavior of K 
and ~. 

Elastic Moduli. The elastic parameters are derived from the Fig. I modelby means of 
two-sided bounds for the bulk modulus K [15]: 

{K (x~, xj)} s ~ K <~ [{[K (xh)]-~}Ll -~, 

and for the shear modulus 

i n  which  

(5) 

(6) 

{KP}s 
K(x~)= {P}s ' ~(x~) = {~}s, ( 7 )  

K(xi, xj) = ~ L {Kp} z - ]  , ~(xl, xj) = {g_~}~-l. (8) 

Here the braces represent averaging over the coordinates: 

1 L 1 ~(~(r)dxidxj ,  {f(r)}L = -~- - !  /(r)dxk, {/(r)}s = -  ~ J J  (9) 
(s) 

in which L is the length of the representative volume V along the Ox k axis, while S is the 
cross section of V in the plane x k = const. 

The (5) and (6) bounds can be used with stage averaging when the entire representative 
volume V is split up into parts, from which the effective parameters are determined and then 
the formulas are used for the upper and lower bounds (combined method). That procedure gives 
formulas for the effective properties, which can be used in calculations on the values within 
the possible ranges and the related arithmetic means. 

From (4) and (5) with stage averaging [15] we determined the effective elastic moduli K 
and ~, for which formulas are given in the Appendix. 

Results. Figure 2 shows calculations on the effective Poisson's ratio ~. Curves i, 3, 
and 5 are for t = 1.6 v c = 0.15 while 2, 4, and 6 are for t = 3.6, v c = 0.3. Curves 1-4 are 
for K2/K I = 10 -4 , with ~i/Kx = 0.3, ~2/K2 = 10 -2 , for curves 1 and 2, and ~I/Kx = 0.255; for 
curves 3 and 4. Curves 5 and 6 are for K2/K I = 6.75.10 -a, BI/KI = 0.773, ~2/K 2 = 0.255. 
Figure 2 implies that v is substantially dependent not only on v c and t but also on ~I/Kx 
and ~2/K2, where curves 3 and 4 are of interest, as there is a nonmonotone dependence of 
on concentration: curve 3 has a minimum around the transition from an infinite cluster to 
an isolated form of cluster for the rigid component, while curve 4 has two turning points 
near the transition from isolated clusters to an infinite one (minimum) and the converse 
(maximum) for the rigid component. Curves i and 2 (~I/KI = 0.3, ~2/K2 s 0) are convex up- 
wards, while 3 and 5 are convex downwards, i.e., the concentration dependence of v varies 
substantially with changes in ~I/KI and ~2/K2. 
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TABLE i. 

V 1 range S~ M) 

Vc < vi ~ 0,5 

Percolation-Model Geometrical Parameters* 

0 

1 v 1 -- v c 
A/3 3 I - -  v c 

S~ 

v~/3 

Ss 

0 

2/1(1 -- I~,) 

$4 

1--v~/3  

1--1~--Ss 

II 

0 

S~/2 

l, 

vl/3 
c 

*) $1=  S ~ -  (S~ M) - -  S~ g (z), S -- ( v1 - -  vc ~t g (z)=5,53z - -  8,3z ~ --~ 3,23z s -~- 0,54z 4, 
-\ 1 - - v c  ] '  

z = KdKx, K~ < Kx. 
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Fig. 3 

Fig. 2. Poisson's ratio as a function of the bulk concentration 
v 2 of the soft component, the curves being by calculation for 
i, 2) K2/K l = 10 -4 , ~I/KI = 0.3, ~2/K2 ~ 10 -2 (i - t = 1.6, v c = 

0.15; 2) t = 3.6, v c = 0.3); 3, 4) K2/K I = 10 -4 ~m/Kl = ~2/K2 = 

0.255 (3 - t = 1.6, v c = 0.15; 4) t = 3.6v c = 0.3); 5, 6) K2/K l = 
6.75"10-3, P2/~l = 2.1155"10-3, ~x/KI = 0.773, B2/K2 = 0.255 (5 - 

t = 1.6, v c = 0.15; 4- t = 3.6, Vc = 0.3). 

Fig. 3. K/K I and c/c I as functions of vl, the bulk concentration 
of the rigid component: i, 2) o2/o I = 10 -4 (I - t = 1.6, v c = 0.15; 

2 - t = 3.6, v c = 0.3); 3, 4) K2/K I = 10 -4 , ~I/KI = p2/K2 = 0.255, 

(3 - t = 1.6, v c = 0.15; 4 - t = 3.6, v c = 0.3). 

Figure 3 shows calculations on K and o. There are differences in behavior for the same 

Vc and t: a sharper increase in log K/KI near the threshold (v1~vc) by comparison withthat 

i n  l o g ~ / a l a n d  a w e a k  d e p e n d e n c e  o f  l o g  K/K1 on  v l  f o r  v l > > V c ,  i . e . ,  O(lgK/KO < 0 ( l g a / a 0  

dr1 Ov~ 

for v~>vc . If bh/Ifl ~ ~2/K~ , the vl dependence of IgK//flis close to that for Igo/~ r 

If K is represented as in (5), f and v~ are dependent on pl/K1 and p2/K2, i.e., v~ and 

f are not universal parameters for the elastic parameters, in contrast to the conductivity. 
Therefore, additional measurements are required to refine v~ and f. 
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Fig. 4. Dependence of ~/~z on the 
polystyrene bulk concentration vl, 
curves from calculation: i) v c = 
0.2, t = 1.6; 2) v c = 0.15, t = 1.6, 
points from experiment [16]. 

The threshold should be defined as v c = 0.15 • 0.03 in calculating the elastic parameters 
for microscopically inhomogeneous materials from the Fig. 1 model because in that model v c is 
a topological characteristic, not the value for the bulk concentration at which rigidity 
arises. Here f is taken as 1.6-2 because in that model it is not dependent on the component 
properties, while the Poisson's ratios vi for the components affect K and ~ in this model in 
a way that is incorporated directly in specifying the input data. 

Materials showing percolation effects for the elastic properties are composites of poly- 
mer-polymer type. 

Figure 4 compares calculations from (ii) with measurements on ~/~z for a polybutadiene- 
polystyrene composite, which gives quite good agreement. An infinite cluster is formed here 
when 0.15 < v I <i < 0.2, i.e., v c = 0.175 • 0.025, and the critical index is t = 1.6. 

APPENDIX 

The bulk modulus is 

K = • (S, + S~) + u, ha (S, + Sa) 
ha (S~ + $8) + ha (S~ -t- Sa) 

( lO)  

in which 

K1P1SI + K2P~S2 . 
P1S1 -}- P,zSs 

• + ~2h~$3 . 
hlS~ + h2S3 

~% = I n~ t~ n~ [d,t~ + d. (1 - -  tl)] [P, la + P2 (1 - -  h)] ~-' - [ - _ - = - - ( ] - - / , ) - - 2  " 
t K1 K ,  K1PII1 + K2Pz (1 - -  l~) ' I 

x 1 = { . _ . : ~ _ / 2 +  n,  ( 1 - - l ~ ) - - 2  [dJ~ -]- d2 (1--1~)] [Pll~ -}- P~ (1--12)] } - ' ;  
K1 ~ K1Pll~ -}- K2P~ ( 1 - -  l~) 

9 . ~ 6rr h 
ni---- (3@4m~) ' Pi-- 3-{-4m i ; 

di 3 - -  2mi = - -  ; m~ ~ d K ~ ,  i = 1, 2 .  
3 q- 4tn i 

The shear modulus is 

= ~, (s~ + s~) + ~a (s,  + s 3 ,  
( 1 1 )  

1108 



in which 
S1 S~ 

S~ Ss 
= + s----2 + + 

If the combined concentration is v I > 0.5, the subscripts 1 and 2 are interchanged in K i 
and ~i in (i0) and (ii) and for v i in Table i. 
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RADIAL ELECTRON DENSITY DISTRIBUTION IN PLASMA FLOW IN A 

COAXIAL HALL ACCELERATOR 

I. A. Anoshko, V. S. Ermachenko, M. N. Rolin, 
V. G. Sevast'yanenko, and L. E. Sandrigailo 

UDC !533.9. 082 

The values of the electron density determined from measurements of the Starr broad- 
ening of a hydrogen line are presented. 

Plasma accelerators are employed in diverse areas of science and technology. To increase 
their operating efficiency it is necessary to study the physical processes occurring in the 
plasma jet. Information about these processes can be obtained from measurements of the tem- 
perature and particle density. 

In this paper we present the results of measurements of the electron density in the 
plasma flow in a coaxial Hall accelerator; the principle of operation and the construction 
of the accelerator are described in [i, 2]. The electron density was determined in the sec- 
tion of the plasma jet located 130 mm from the cutoff of the nozzle of the accelerator; the 
flow rate of the working gas C~ = i0 g/sec (8.5 g of air and 1.5 g of nitrogen), the magnetic 

A. V. Lykov Institute of Heat and Mass Transfer, Academy of Sciences of the Belorussian 
SSR. Belorussian Polytechnical Institute, Minsk. Translated from Inzhenerno-Fizicheskii 
Zhurnal, Vol. 57, No. 3, pp. 491-493, September, 1989. Original article submitted February 
24, 1988. 

0022-0841/89/5703-1109512.50 �9 1990 Plenum Publishing Corporation 1109 


